	2023 年公卫执业医师	《生物化学》考试大纲
单元	细目	要点
一、蛋白质的结构与功能	1.氨基酸与多肽	(1) 氨基酸的结构与分类
		(2) 肽键与肽链
	2.蛋白质的结构	(1) 一级结构
		(2) 二级结构
		(3) 三级和四级结构
	3.蛋白质结构与功能的关系	(1)蛋白质一级结构与功能的关系
		(2)蛋白质高级结构与功能的关系
	4.蛋白质的理化性质	蛋白质的等电点、沉淀和变性
二、核酸的结构 与功能	1.核酸的基本组成单位—— 核苷酸	(1)核苷酸分子组成
		(2)核酸(DNA 和 RNA)
	2.DNA 的结构与功能	(1) DNA 碱基组成规律
		(2) DNA 的一级结构
		(3) DNA 双螺旋结构
		(4)DNA 高级结构
		(5) DNA 的功能
	3.DNA 理化性质及其应用	(1) DNA 变性和复性
		(2) 核酸杂交
		(3) 核酸的紫外线吸收
	4.RNA 结构与功能	(1) mRNA
		(2) tRNA
		(3) rRNA
		(4)其他 RNA
三、酶		(1) 酶的分子结构与催化作用
一、 阿		(2) 酶促反应的特点
		(3) 酶-底物复合物
		(1)维生素与辅酶的关系
	2.11014 314 110912 3	(2) 辅酶作用
		(3) 金属离子作用
	3.酶促反应动力学	(1) Km 和 Vmax 的概念
	3.14 (C/X/LL-91/1)	(2) 最适 pH、最适温度和酶浓度
		(1) 不可逆抑制
	7.14 P3/13 - 3 WX1 D / 13	(2) 可逆性抑制
		(3) 激活剂
	5.酶活性的调节	(1) 别构调节
	つ・日中1日 1工口10円 ト	(2) 化学修饰调节
		(3)酶原激活
		(4) 同工酶
	C校酶	
III 业主人(广) 2014	6.核酶	核酶的概念
四、糖代谢	1.糖的分解代谢	(1) 糖酵解的基本途径、关键酶和生理意义
		(2) 糖有氧氧化的基本途径、关键酶和生理意

		义
		(3)三羧酸循环的生理意义
	2.糖原的合成与分解	(1) 肝糖原的合成
	MI/M IN G IN / M I	(2) 肝糖原的分解
	3.糖异生	(1) 基本途径和关键酶
		(2) 生理意义
		(3)乳酸循环
	4.磷酸戊糖途径	(1) 关键酶和重要的产物
		(2) 生理意义
	5.血糖及其调节	(1) 血糖浓度
		(2) 激素的调节作用:胰岛素、胰高血糖素、
		糖皮质激素
五、生物氧化	1.ATP 与其他高能化合物	(1) ATP 循环与高能磷酸键
		(2)ATP 的利用
		(3) 其他高能磷酸化合物
	2.氧化磷酸化	(1) 氧化磷酸化的概念
		(2)两条呼吸链的组成
		(3)ATP 合酶
		(4) 氧化磷酸化的调节及影响因素
六、脂类代谢	1.脂质的生理功能	(1) 储能和供能
		(2) 生物膜的组成成分
		(3) 脂质衍生物的调节作用
		(4) 营养必须脂酸
	2.脂质的消化与吸收	(1) 脂肪乳化及消化所需酶
		(2) 甘油一脂合成途径及乳糜微粒
	3.脂肪的合成代谢	(1) 合成的部位
		(2) 合成的原料
		(3) 合成的基本途径及调节
	4.脂肪酸的合成代谢	(1) 合成的部位
		(2) 合成的原料
	5.脂肪的分解代谢	(1) 脂肪动员
		(2) 脂酸β-氧化的基本过程及调节
		(3) 酮体的生成、利用和生理意义
	6.甘油磷脂代谢	(1) 基本结构与分类
		(2) 合成部位和合成原料
	7.胆固醇代谢	(1) 合成部位、原料和关键酶
		(2) 合成的调节
		(3) 转化及去路
	8.血浆脂蛋白代谢	(1) 血脂及其组成
		(2)血浆脂蛋白的分类及功能
		(3)高脂蛋白血症
七、氨基酸代谢	1.蛋白质的生理功能及营养 作用	(1) 氨基酸和蛋白质的生理功能
		(2) 营养必需氨基酸的概念和种类

		(3) 氮平衡
	2.蛋白质在肠道的消化、吸收及腐败作用	(1) 蛋白酶在消化中的作用
		(2) 氨基酸的吸收
		(3)蛋白质的腐败作用
	3.氨基酸的一般代谢	(1) 转氨基作用
		(2) 脱氨基作用
		(3) a-酮酸的代谢
	4.氨的代谢	(1) 氨的来源
		(2) 氨的转运
		(3) 氨的去路
	5.个别氨基酸的代谢	(1) 氨基酸的脱羧基作用
		(2) 一碳单位的概念、来源、载体和意义
		(3) 甲硫氨酸循环、SAM、PAPS
		(4) 苯丙氨酸和酪氨酸代谢
八、核苷酸代谢	1.核苷酸代谢	(1) 两条嘌呤核苷酸合成途径的原料
		(2) 嘌呤核苷酸的分解代谢产物
		(3)两条嘧啶核苷酸合成途径的原料
		(4) 嘧啶核苷酸的分解代谢产物
	2.核苷酸代谢的调节	(1)核苷酸合成途径的主要调节酶
		(2) 抗核苷酸代谢药物的生化机制
九、遗传信息的 传递	1.遗传信息传递概述	中心法则
14.7%	2.DNA 的生物合成	(1) DNA 生物合成的概念
		(2)DNA 的复制过程
		(3) 逆转录
		(4) DNA 的损伤与修复
	3.RNA 的生物合成	(1) RNA 生物合成的概念
		(2) 转录体系的组成及转录过程
		(3) 转录后加工过程
十、蛋白质生物 合成	1.蛋白质生物合成的概述	(1) 蛋白质生物合成的概念
		(2)蛋白质生物合成体系和遗传密码
		(3)蛋白质生物合成的基本过程
	2.蛋白质生物合成与医学的 关系	(1) 蛋白质生物合成障碍与疾病
		(2)蛋白质生物合成抑制剂
十一、基因表达 调控	1.基因表达调控的概述	(1) 基因表达及调控的概念和意义
,41 -		(2) 基因表达的时空性
		(3) 基因的组成性表达、诱导与阻遏
		(4) 基因表达的多级调控
		(5)基因表达调控的基本要素
	2.基因表达调控的基本原理	(1) 原核基因表达调控(乳糖操纵子)

		(2) 真核基因表达调控(顺式作用元件、反式
		作用因子)
十二、信号转导	1.信号分子	(1) 概念
		(2)分类
	2.受体	受体分类和作用特点
	3.膜受体介导的信号转导机 制	(1) G 蛋白偶联受体介导的信号转导通路
		(2) 单跨膜受体介导的信号转导通路
	4.胞内受体介导的信号转导 机制	(1) 概念和分类
		(2)信号转导机制
十三、重组 DNA 技术	1.概述	(1) 基本概念
		(2) 基因工程基本原理及过程
	2.基因工程与医学	(1)疾病相关基因的发现
		(2) 生物制药
		(3)基因诊断
		(4) 基因治疗
十四、癌基因与 抑癌基因	1.癌基因与抑癌基因	(1) 癌基因的概念
		(2)抑癌基因的概念
	2.生长因子	(1) 生长因子的概念
		(2) 生长因子的作用机制
十五、血液生化	1.血液的化学成分	(1) 水和无机盐
		(2)血浆蛋白质
		(3) 非蛋白质含氮物质
		(4) 不含氮的有机化合物
	2.血浆蛋白质	(1) 分类
		(2) 来源
		(3)功能
	3.红细胞的代谢	(1)血红素合成的原料、部位和关键酶
		(2)成熟红细胞的代谢特点
十六、肝生化	1.肝的生物转化作用	(1) 基本概念和特点
		(2) 反应类型及酶系
		(3)影响因素
	2.胆汁酸代谢	(1) 胆汁酸的化学
		(2) 胆汁酸的代谢
		(3) 胆汁酸代谢的调节
	3.胆色素代谢	(1)游离胆红素和结合胆红素的性质
		(2) 胆色素代谢与黄疸